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1. Introduction

A variety of approaches to the regularisation of quantum field theory exist. Dimensional

regularisation [1] is most popular in the framework of perturbation theory. In order to

overcome the limitations of a perturbative expansion, however, a regularisation should

restrict the formulation to a finite set of degrees of freedom. If the Euclidean action is real

and bounded from below, a model can then be treated numerically as a statistical system.

This method provides in many cases the only access to observables beyond perturbation

theory or semi-classical approximations.

From a general perspective, field theoretic models start from some algebra A for func-

tions on a manifold M, and a differential operator D with its Hilbert space H. The

standard approach for non-perturbative studies discretises the manifold to a lattice. Then

the degrees of freedom to work with are usually the field variables on the lattice sites or

links (see e.g. ref. [2]). As an alternative, also Monte Carlo simulations employing the fields
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at discrete momenta have been suggested [3], though much less explored.1 In both cases

M is reduced to a finite lattice.

Generally the goal is to approximate a triple (A,H,D) [4]. This might be achieved in

quite abstract ways, but in practice a physical picture for the regularised system is a useful

guide-line. In the lattice formulation one approximates the entire triple. The algebra is

approximated by a commutative algebra on a lattice of points which discretise M, while

the differential operator is obtained by a finite difference approximation to D, and the

Hilbert space is adapted to this operator.

Here we are concerned with an alternative scheme, which is endowed with a physical

picture on the regularised level as well. Instead of the discrete eigenvalues of the space-time

or momentum coordinates, we now deal with angular momentum coordinates. To this end

the fields are wrapped on a sphere and expanded in spherical harmonics. A related idea

occurred already in an early construction of a non-commutative space, which added an

extra dimension and preserved 5d Lorentz symmetry [5]. This method benefits from the

natural discretisation of angular momentum space in quantum physics, but a cutoff still

has to be imposed. In the interpretation of the angular momenta as spherical coordinates,

the cutoff renders the sphere fuzzy. These coordinates are embedded in matrices, which

are Hermitian in the case of the neutral scalar field to be considered here.

The concept of a fuzzy sphere regularisation has been established in refs. [6]. The

Laplace-Beltrami operator D2 is given in terms of angular momentum operators, which

are expressed by N -dimensional irreducible representations of SU(2). The algebra A is

expanded in the polarisation tensors, which are matrix analogues of the spherical harmon-

ics [7]. In contrast to the lattice, this regularisation does not explicitly break the space

symmetries. Its analytic properties have been studied extensively in recent years, but the

applicability in numerical simulations is less explored. The questions are if such simulations

are feasible and to what kind of limits the measured observables can be extrapolated. So

far the 2d λφ4 model has been investigated in this respect [8].2 Here we extend this study

to three dimensions, where the spatial plane is mapped onto a fuzzy sphere, and the Eu-

clidean time is lattice discretised. This extension entails qualitative differences, which are

essential in view of the prospects of proceeding to four dimensions. In particular the radius

R of the sphere plays an independent rôle (it cannot be absorbed by simple rescaling). The

recovery of a flat space without truncation requires the limits N, R → ∞.

Section 2 presents the fuzzy sphere formulation of the λφ4 model, along with suitable

order parameters. The identification of the phase transitions in the (λ,m2)-plane is de-

scribed in section 3. Section 4 discusses the scaling of the phase transition lines in terms

of N and R. Section 5 compares our results to the phase diagram of the corresponding

2d model on a fuzzy sphere, and to the model on a 3d non-commutative torus. We also

demonstrate that our data at strong coupling agree with the behaviour of a matrix chain

model, which attracted interest in string theory. This observation allows for a conjecture

1Of course, the standard Hybrid Monte Carlo algorithm for dynamical fermions includes a Langevin

ingredient in momentum space, but in that case the basic regularisation is nevertheless a space-time lattice.
2Further numerical studies on the fuzzy sphere address U(1) gauge theory [9].
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about the large N extrapolation, as we point out in section 6. Our results are summarised

in section 7, and technicalities of the simulation are added in an appendix.

A synopsis of this work has been anticipated in a proceeding contribution [10], and

details are presented in a Ph.D. thesis [11].

2. The fuzzy sphere formulation of the 3d λφ4 model

2.1 Regularisation

In this subsection we specify the regularisation that we used in our simulations. The theory

to be regularised is the λφ4 model in 3 dimensions, where we assume periodic boundary

conditions in the Euclidean time t , and the space is taken as a sphere in RI
3. Thus the

action reads

S[φ] =

∫ T

0
dt

∫

d3x δ(~x 2 − R2)

[

1

2
φ

(

− ∂2
t +

L2

R2

)

φ +
m2

2
φ2 +

λ

4
φ4

]

. (2.1)

T is the temporal periodicity and R is the radius of the sphere, which we are going to

denote by S2
R . φ(t, ~x) ∈ RI is a scalar field and L2 =

∑3
i=1 L2

i , Li being the angular

momentum components.

For the regularisation in time we introduce Nt equidistant sites and replace ∂t by the

standard lattice derivative. We are going to use lattice units, i.e. we set Nt = T . Thus a

configuration is given by a set φt(~x) , t = 1, . . . , Nt .

Our regularisation of the sphere S2
R is less standard, but it also relies on a concept

established in the literature [6]. The coordinates xi are replaced by operators Xi, which

still obey the constraint
3

∑

i=1

X2
i = R2 · 11 . (2.2)

A truncation to a maximal angular momentum ℓmax means that the operators Xi take the

form of N × N matrices with N = ℓmax + 1,

Xi =
2R√

N2 − 1
Li , (Xi ∈ MatN ) . (2.3)

The Li are generators in an N -dimensional irreducible representation of SU(2). These

coordinate operators do not commute,

[Xi,Xj ] = i
2R√

N2 − 1
ǫijkXk . (2.4)

Thus they cannot describe sharp points; the sphere becomes fuzzy.

A scalar field, which can be expressed as a power series in the coordinates, now turns

into an expansion in the operators Xi (at some fixed time site t). Thus this formulation

represents the field by N×N matrices Φt. In particular for the neutral scalar field these ma-

trices are Hermitian. Its spatial derivatives are given as commutators, ∂iφt(~x) → i [Li,Φt] .

– 3 –
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In summary, the recipe for the regularisation from a sharp to a fuzzy sphere involves

the replacements

xi ∈ S2
R → Xi ∈ MatN

φt(~x) ∈ C∞(S2
R) → Φt ∈ MatN (Hermitian)

L2φt(~x) → L̂2Φt :=

3
∑

i=1

[Li, [Li,Φt]]

1

4πR2

∫

S2

R

dΩ φt(ϕ, ϑ) → 1

N
Tr(Φt) , (2.5)

where the last relation preserves the normalisation (dΩ = R2 sin ϑ dϑ dϕ).

We implement these transitions at each discrete time site t. This leads to field config-

urations given by Φ = {Φ1,Φ2, . . . ,ΦNt
}, and to the action

S[Φ] =
4πR2

N
Tr

[ Nt
∑

t=1

{

1

2
(Φt+1 − Φt)

2 +
1

2R2
Φt L̂2 Φt +

m2

2
Φ2

t +
λ

4
Φ4

t

}]

. (2.6)

In this regularised form the functional integral reduces to an integration over the inde-

pendent elements of the Hermitian matrices. This is in fact tractable in Monte Carlo

simulations; note also that the action (2.6) is real.

A qualitative difference from the 2d model on a fuzzy sphere (which corresponds to

our model on a single time site) is that the radius R plays an independent rôle; it cannot

be absorbed in the coupling constants.

A virtue of this approach — compared to the usual space discretisation — is that

continuous spatial rotational symmetry persists on the regularised level. The fuzzy sphere

is rotated by the adjoint action of an element U ∈ SU(2) in the N -dimensional irreducible

representation,
~X → U † ~XU = R ~X , Φt → U †ΦtU , (2.7)

where U can be written in the form U = exp(i~ω~L ) , and R ∈ SO(3). A global rotation in

all time sites leaves the action (2.6) invariant.

This virtue may prove particularly powerful in cases where continuous rotational and

translational symmetry (which we obtain in the large R limit) play a central rôle, such as

supersymmetric models.3

The question how profitable that symmetry ultimately is has to be investigated based

on non-perturbative results. A prerequisite is a controlled large N limit, and testing this

property is a goal of the current work. It should also illuminate the status of possible

pitfalls. In particular, the non-commutativity of the operators Xi implies a non-locality of

the interaction in the regularised model. We are going to see that this property can indeed

3Literature on supersymmetric systems on a fuzzy sphere exists regarding the theoretical basis [12] and

first simulations [13], though there are many outstanding issues in that field. Another important point in

this context is that — in addition to the space symmetries — also chiral symmetry is intact on the fuzzy

sphere, without a fermion doubling problem [14].

– 4 –



J
H
E
P
0
4
(
2
0
0
8
)
0
4
1

affect the thermodynamic limit.4 A further goal is to elaborate links of the observed

universality class to other models of interest.

2.2 Observables

Now we introduce the observables to be measured numerically. For this purpose we first

perform a field decomposition, which is compatible with rotation symmetry.

The original field φ can be decomposed in the basis of spherical harmonics Yℓm on S2
R ,

φ(t, ϕ, ϑ) =
∞

∑

ℓ=0

ℓ
∑

m=−ℓ

cℓm(t)Yℓm(ϕ, ϑ) . (2.8)

In full analogy, the regularised space MatN has a basis consisting of the polarisation tensors

Ŷℓm, see e.g. ref. [7]. For ℓ = 0, . . . , N − 1, m = −ℓ, . . . ℓ these are N2 matrices with the

characteristic properties

4π

N
Tr(Ŷ †

ℓ′m′ Ŷℓm) = δℓ′ℓ δm′m ,

Ŷ †

ℓ(−m) = (−1)mŶℓm ,

L̂2Ŷℓm = ℓ(ℓ + 1)Ŷℓm . (2.9)

Their construction is reviewed in ref. [11]. The leading examples are

Ŷ00 =
1√
4π

11N

Ŷ10 =

√

3

π(N2 − 1)
L3 , Ŷ1±1 = i

√

3

2π(N2 − 1)
L±

with (L3)ij =
1

2
(N + 1 − 2i) δij

(L±)ij = (L1 ± iL2)ij =

{

√

i(N − i) δi+1,j
√

j(N − j) δi−1,j
.

We perform this decomposition in each time site,

Φt =
N−1
∑

ℓ=0

ℓ
∑

m=−ℓ

cℓm(t)Ŷℓm , (2.10)

so that Φt is fixed by the N2 coefficients

cℓm(t) =
4π

N
Tr

(

Ŷ †
ℓmΦt

)

. (2.11)

In this work we consider the time averaged terms

Φ̄ :=
1

Nt

∑

t

Φt , c̄ℓm :=
1

Nt

∑

t

cℓm(t) , (2.12)

4The impact of a non-local regularisation on the continuum limit is intensively discussed in the lattice

community (see e.g. refs. [15]) in particular in the light of recent large-scale QCD simulations with “rooted

staggered fermions”.
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phase

disordered 〈ϕ0〉 ≈ 〈ϕ1〉 ≈ 0

uniform ordered 〈ϕ0〉 ≫ 〈ϕ1〉 ≈ 0

non-uniform ordered 〈ϕ1〉 ≫ 〈ϕ0〉 ≈ 0

Table 1: The respective magnitudes of the order parameters 〈ϕ0〉 and 〈ϕ1〉 for the three phases that

we observed in our results of section 3 and 4. Here the terms in definition (2.14) are approximately

related as 〈‖Φ̄‖2〉 ≈ 〈ϕ2
0〉 + 〈ϕ2

1〉, so that the higher contributions 〈ϕ2

ℓ>1
〉 are small. In general one

could distinguish more complicated ordering structures too. They occur at the strong couplings, to

be addressed in section 5.

which are related as

c̄00 =

√
4π

N
Tr(Φ̄) , c̄1m =

4π

N
Tr

(

Ŷ †
1mΦ̄

)

, etc. (2.13)

We further introduce the quantities

ϕ2
ℓ :=

ℓ
∑

m=−ℓ

|c̄ℓm|2 , ϕℓ :=
√

ϕ2
ℓ ,

‖Φ̄‖2 :=

∞
∑

ℓ=0

ϕ2
ℓ =

4π

N
Tr(Φ̄2) . (2.14)

We are going to explore the phase diagram by measuring in particular the order parameters

〈ϕ0〉 and 〈ϕ1〉 . (2.15)

Based on the magnitudes of these expectation values we distinguish three phases, as we

specify in table 1. Equivalent tools were applied before in investigations of the 2d model

on a fuzzy sphere [8].

• In the disordered phase 〈ϕℓ〉 ≈ 0 holds for all ℓ. The angular mode decomposition

does not detect any contribution that could indicate a spontaneous breaking of the

rotational symmetry on the sphere.

• The uniform ordered phase is characterised by 〈‖Φ̄‖2〉 ≈ 〈ϕ2
0〉 ≫ 0 , i.e. the zero

mode contributes significantly, whereas higher modes are suppressed. This phase

corresponds to the spontaneous magnetisation in a ferromagnet.

• In the non-uniform ordered phase a non-zero mode condenses, which leads to the

relation

〈‖Φ̄‖2〉 ≫ 〈ϕ2
0〉 ≈ 0 .

In this case the rotational symmetry of the sphere is spontaneously broken. For the

settings to be explored in sections 3 and 4, this is manifest by a dominant contribution

for ℓ = 1 : 〈‖Φ̄‖2〉 ≈ 〈ϕ2
1〉 ≫ 0, 〈ϕ2

ℓ 6=1〉 ≈ 0 .
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In the case of strong coupling the non-uniform ordered phase is dominated by the

condensation of higher modes, 〈ϕℓ〉 ≫ 〈ϕ1〉 ≈ 〈ϕ0〉 ≈ 0 for some ℓ > 1.

The general order parameter for this phase reads 〈‖Φ̄‖2 − ϕ2
0〉.

For a precise identification of the phase transition lines, we also consider the

susceptibility-type observables5

χℓ := 〈ϕ2
ℓ 〉 − 〈ϕℓ〉2 , (2.16)

which display peaks at the corresponding phase transitions.

To further substantiate the measurement of the phase diagram we take thermodynamic

quantities into consideration as well, in particular the internal energy U and the specific

heat C,

U = 〈S〉 , C = 〈S2〉 − 〈S〉2 . (2.17)

A peak in C , and in one of the susceptibilities χℓ , indicates a (regularised) second order

phase transition.

Note that the non-uniform ordered phase is specific to the fuzzy sphere; it does not

occur in a regularisation on a sharp sphere, or — generally speaking — on commutative

spaces. In the flat non-commutative space, such a phase was predicted in ref. [16] for the

λφ4 model in 3 and 4 dimensions, as a consequence of the notorious mixing of ultraviolet and

infrared singularities (UV/IR mixing). For d = 4 arguments involving the renormalisation

group [17] and an effective action [18] were added. In d = 3 this behaviour could in

fact be demonstrated numerically [19] by means of lattice simulation results, which were

extrapolated to a simultaneous UV and IR limit while keeping the non-commutativity

constant (“double scaling limit”). We will discuss the relation between that result and the

system studied here in Subsection 5.2.

These three phases, including the phase of non-uniform order, were also observed

numerically on the fuzzy sphere without time direction [8], in agreement with theoretical

considerations [20, 21]. Similarly this exotic phase was found in lattice studies of the 2d

non-commutative plane [22, 19]. However, in that case a double scaling limit has not been

worked out so far, hence the existence of this phase in the continuous plane is an open

question.6

Here we reconsider the 3d model. However, the spatial part is not accommodated on

a non-commutative plane but on a fuzzy sphere, as we pointed out before. In addition our

main interest refers to the extrapolation to a commutative limit — in contrast to double

scaling limit addressed in ref. [19] — in view of the possibility of using the fuzzy sphere as

a regularisation scheme for ordinary (i.e. commutative) field theory.

5In the following we will refer to them simply as “susceptibilities”.
6Due to the non-locality it is not ruled out by the Mermin-Wagner Theorem. Still ref. [16] does not

expect this phase (for a charged scalar field) in d = 2, based on an extension of this Theorem to a related

effective action with an unusual kinetic term. For a neutral scalar field ref. [23] arrives at the opposite

conclusion.
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Figure 1: The specific heat C (on the left) and the susceptibilities χ0 and χ1 (on the right, defined

in eq. (2.16)) for N = 16, R = 4 and λ = 0.44. The location of the maximum of C coincides with

the peak in χ0, which provides a consistent result for the critical value m2

c ≃ −0.32 .

We performed all our simulations at

Nt = N , (2.18)

so that the system has the same number of degrees of freedom in the temporal and in the

spatial directions.

3. Determination of the phase diagram

To explore the phase diagram we fixed some value of λ and varied m2 searching for a

phase transition. Decreasing m2 is analogous to lowering the temperature in statistical

mechanics. In all settings we could identify a critical value m2
c < 0. For m2 > m2

c we are in

the disordered phase (corresponding to high temperature), whereas m2 < m2
c gives rise to

the dominance of some ordering, and therefore spontaneous symmetry breaking. For small

values of λ this order is uniform (like the spontaneous magnetisation of a ferromagnet),

but for larger λ it becomes non-uniform (some kind of staggered order), cf. section 2.

Let us describe the determination of m2
c . As a first example, figure 1 shows results

at N = 16, R = 4, λ = 0.44. The specific heat takes its maximum at m2
c ≃ −0.32 , and

the susceptibilities confirm this value. The peak for χ0 further specifies that we enter the

uniform ordered phase for m2 < m2
c . Unlike C, the χℓ are sensitive to the type of order

below m2
c .

This agreement between the two criteria gives a reliable determination of m2
c . Figure 2

shows this consistency in the case N = 12, R = 8 for a variety of λ values. It also gives an

overview of the phase diagram: as λ rises, m2
c moves to more negative values. This relation

is linear to a good approximation, as we are going to discuss in section 4.

For fixed values of N and R , the (λ,m2)-plane contains a triple point, which we denote

as (λT ,m2
T ). It separates the regimes of weak coupling, λ < λT , and of moderate or strong

coupling, λ>∼λT or λ ≫ λT .
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Figure 2: The order/disorder transition line in the phase diagram for N = 12, R = 8. The

transition is identified consistently from two criteria. This figure shows the regime of weak coupling,

where m2 < m2

c implies a uniform order.

A typical example for the behaviour of the order parameters at weak coupling is shown

in figure 3. For sufficiently negative m2 the order parameter 〈ϕ0〉 rises drastically. The

peaks in χ0 and in the specific heat allow for a more accurate evaluation of m2
c = −0.12(2).

Further insight into this phase transition is gained by splitting the internal energy U (in

eq. (2.17)) into contributions due to the different terms in the action (2.6),

U1 =
2πR2

N
〈Tr

[

∑

t

(Φt+1 − Φt)
2

]

〉 : spatial kinetic contribution

U2 =
2π

N
〈Tr

[

∑

t

(ΦtL̂2Φt)

]

〉 : temporal kinetic contribution

U3 =
2πR2m2

N
〈Tr

[

∑

t

Φ2
t

]

〉 : contribution due to the mass term

U4 =
πR2λ

N
〈Tr

[

∑

t

Φ4
t

]

〉 : contribution due to the self-interaction.

They fulfil the identities

U1 + U2 + U3 + U4 = U , 2(U1 + U2 + U3 + 2U4) = 1 , (3.1)

(the latter is obtained from a variational argument). In our setting the total internal

energy U is identical to the entropy. The last plot in figure 3 illustrates that it deviates

from a constant as m2 is decreased below m2
c . Moreover we see that U3 and U4 drift away

from zero at this transition: the quadratic term becomes negative and the quartic term

positive, which is just the situation that triggers spontaneous symmetry breaking with

uniform ground states.
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Figure 3: Simulation results for the determination of m2

c at N = 12, R = 4, λ = 0.17. On top

we show the order parameters according to specification (2.15) (on the left) and the corresponding

susceptibilities (on the right). We observe a transition between disorder and uniform order at

m2

c = −0.12(2). Below: the specific heat (on the left) and different contributions to the internal

energy U =
∑4

i=1
Ui (on the right). In the phase of uniform order, the potential terms deviate

significantly from zero, so that the mass term U3 (the quartic term U4) becomes negative (positive).

The kinetic contributions U1 (spatial) and U2 (temporal) remain almost constant — here each

dimension contributes approximately the same amount.

Let us proceed to the regime of moderate coupling. Figure 4 shows the order pa-

rameters for an example in that regime, along with the susceptibilities. The data reveal

a transition between disorder and non-uniform order at m2
c = −0.37(2). To provide an

overview, we sketch in figure 5 the complete phase diagram obtained at N = 16, R = 8, as

a further example.

4. The scaling of the phase transitions

In this section we analyse the scaling of the observed phase transition lines — and in

particular their intersection in the triple point — with respect to N and R. We proceed by

considering separately the boundaries of the disordered phase with the two ordered phases.
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Figure 4: The order parameters and susceptibilities for an example at moderate coupling, N = 12,

R = 8, λ = 1.25. At m2 ≃ −0.37 we observe a transition between disorder and non-uniform order.
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Figure 5: Overview of the phase diagram at N = 16 and R = 8.

4.1 Transition between the disordered and the uniform ordered phase

We first return to the fixed size N = 12, R = 8. Figure 2 shows the measured disor-

der/uniform order transition line,

m2
c = −0.39(2)λ . (4.1)

Probing also other sizes — by varying N and R separately — we observed linear relations

again, so we were guided to the ansatz

m2
c = f(N,R)λ , f(N,R) ∝ N δN RδR . (4.2)

In the last expression we anticipate that the function f(N,R) can be parameterised suc-

cessfully in a monomial form. To illustrate this, we first fix again R = 8 but vary N in
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Figure 6: The phase transition disorder/uniform order at N = 8 . . . 33 for R = 4 (on the left), and

for R = 8 (on the right) . We observe consistency with the exponent δN ≃ 0.64 given in eq. (4.3).

the range 8 . . . 33. Figures 6 and 7 (on the left) show that we obtain excellent fits with the

exponent δN ≃ 0.64 at R = 4 . . . 16. By including similar plots for R = 2 and 32 we extract

δN = 0.64(3) . (4.3)

Subsequently we explore the dependence of f(N,R) on R, and we find again agreement

with the monomial ansatz (4.2). Moreover, it turns out that the function f essentially just

depends on the ratio N/R. The exponent δR and the coefficient are determined from the

fit in figure 7 (on the right), and we arrive at

m2
c = −0.31(1)

N0.64(3)

R0.64(1)
λ , (λ ≤ λT ) . (4.4)

We add that the quality of the corresponding fits is very good as long as 3/8<∼N/R <∼ 8. If

the ratio N/R leaves this interval on either side, the data request a more general function

f(N,R) — beyond the monomial form — though the ansatz for m2
c as a linear function of

λ remains applicable over a wider range.

4.2 Transition between the disordered and the non-uniform ordered phase

Figure 8 (on the left) shows the extension of figure 2 to much stronger couplings λ. The

critical values m2
c now mark the transition between disorder and non-uniform order. Over

this range of λ the phase transition line is curved. However, at this stage we concentrate on

the vicinity of the triple point,7 which is around (λT ,m2
T ) ≃ (0.60, −0.23) in this diagram.

Up to λ ≈ 3 a linear fit for m2
c is again very precise, but it now requires an additive

constant, m2
c = −0.11(2) − 0.22(1)λ .

We extend also this consideration to N = 8 . . . 33, see figure 8 on the right. A global

fit implies the generalised form

m2
c = −0.125(25) − 0.0178(10)Nλ . (4.5)

7Large λ values will be addressed in Subsection 5.3.
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transitions at weak coupling.
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Figure 8: The transition disorder/non-uniform order at R = 8 and N = 12 (on the left), and

N = 8 . . . 33 (on the right).

In analogy to Subsection 4.1 we repeated this study for R = 2, 4, 16 and 32; the case

R = 16 is shown as an example in figure 9 (on the left). Since the choice of Nλ as the

parameter on the x-axis works well in all these cases, we are led to the ansatz

m2
c = −g(R) − h(R)Nλ , (λ>∼λT ) . (4.6)

Figure 9 (on the right) shows our fits for the functions g(R) and h(R), which imply

g(R) = 6.0(15)R−1.92(10) , h(R) = 0.082(7)R−0.72(4) . (4.7)

4.3 The triple point

We are now in a position to evaluate the triple point by the intersection of the phase

transition lines at low and moderate coupling, given in eq. (4.4), and in eqs. (4.6), (4.7).
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The intersection point is located at

(λT ,m2
T ) ≃

(

19(5)R−1.20(11)N−0.64(9),−5.9(16)R−0.56(11)N0.0(1)

)

R0.08(4) − 0.26(2)N0.36(9)
. (4.8)

We assume Gaussian error propagation, and include a possible error on the power of N in

the ansatz (4.6).

This equation parameterises the triple point in the range for N and R that we sim-

ulated. However, this formula cannot be extrapolated to large N , due to the form of the

denominator.8 A direct investigation of the triple point — and therefore of the phase di-

agram — in the thermodynamic limit would require simulations at very large N . We will

come back to this issue in section 6, where we conjecture the properties of this extrapolation

indirectly.

5. Confrontation with related models

Having elaborated the features of the phase diagram, we now compare it to related models,

which were also simulated in recent years, and to reduced matrix models, which have been

studied analytically.

5.1 The 2d λφ4 model on a fuzzy sphere

At finite N , the phase diagram for the 2d λφ4 model on a fuzzy sphere is qualitatively the

same as we found in section 3. An explicit convergence of our model to the 2d case could

be expected in a setting which renders solely the temporal kinetic term negligible. We saw,

however, in figure 3 that the impact of this term remains significant and approximately

constant at weak and moderate coupling. This property is generic in our study, hence there

8Unless one fixes R ∝ N , such extrapolations also takes us beyond the validity interval for the ratio

N/R that we specified in Subsection 4.1.
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is no basis for expecting a reduction to the 2d model on a fuzzy sphere. At large λ some

reduction sets in, but it is of a different kind, see Subsection 5.3.

5.2 Comparison with a non-commutative torus

Ref. [19] presented a related numerical study of the 3d λφ4 model: also there the Euclidean

time was lattice discretised, while the spatial dimensions were treated by non-commutative

coordinates. However, a lattice formulation and periodic boundary conditions were as-

sumed for the spatial directions as well, and the non-commutativity tensor Θµν was con-

stant. By means of Morita equivalence [24] the scalar field — first defined on a N × N

lattice in the non-commutative plane — was mapped onto Hermitian N × N matrices, so

the action ultimately simulated was similar to eq. (2.6) (and also the rule (2.18) was the

same). The difference is the form of the spatial kinetic term: on the non-commutative

plane it was constructed by an adjoint matrix operation which represents a shift by one

lattice unit.

The phase diagram at finite N was qualitatively equivalent to the form that we found

here. On the torus the non-uniform ordered phase was denoted as “striped phase”, and

the stripe formation for the two signs of φt(x1, x2) could indeed be visualised by mapping

the matrices back to 2d lattice configurations (at a fixed time site).

Let us proceed to a quantitative comparison. On the torus the boundary of the disor-

dered phase was approximately identified as [19]

disorder/uniform : m2
c ≃ −0.80λ (5.1)

disorder/non−uniform : m2
c ≃ −0.48λ − 80

N2
(5.2)

triple point : (N2λT , N2m2
T ) ≈ (250, −200) . (5.3)

The transition disorder/non-uniform order was only explored up to moderate coupling,

λ = O(1).

Our corresponding results are given in eqs. (4.4) and (4.6) to (4.8). The transition

line (5.1) can be matched if we set R ≃ 0.23N , but the triple point still differs strongly.

However, in the weak coupling region a link between the two models can hardly be expected,

due to the significance of the spatial kinetic term.

We proceed to moderate coupling and look at the requirements for agreement with

eq. (5.2). The condition for the function g(N,R) reads R ≃ 0.26N1.04, which is close

to the above requirement for eq. (5.1). On the other hand, the condition due to the

function h(N,R) deviates more from this pattern, in particular in view of the exponent

(R ≃ 0.28N1.39).

We anticipate at this point that the geometrical picture — to be described in section

6 — suggests that the non-commutative plane emerges for

R ∝ Nβ , β = 1/2 . (5.4)

Hence the value for β obtained at moderate λ takes us even further away from the geo-

metrical picture. This may appear somewhat surprising, but it is not paradoxical. For
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λ/λT = O(1) the spatial kinetic term is significant, as the example in figure 3 shows, so a

difference in this term may well displace the phase transition lines.

In addition we saw that our results in section 4 suffer from finite N artifacts, hence

the considerations in this and the previous Subsection have to be interpreted cautiously.

5.3 Reduction to a matrix chain

At strong coupling λ the impact of the kinetic terms is reduced. In the extreme case where

they are fully negligible, one could imagine a transition to a 1-matrix model of a single

Hermitian random matrix Φ1 with the potential 4πR2 ·Tr [m
2

2 Φ2
1 + λ

4Φ4
1] . That model has

been studied analytically at m2 ≥ 0 [25] and at m2 < 0 with the result [26]

m2
c = −N

R

√

λ

π
. (5.5)

Consistent numerical data have been reported for the 2d λφ4 model on a fuzzy sphere [8]

and on a non-commutative plane [27]. In our simulations we explored values up to λ =

O(102 . . . 103), but we could not observe the feature of eq. (5.5) [11].

We did find, however, consistency with a partial reduction, which only neglects the

spatial kinetic term; this is opposite to the scenario commented on in Subsection 5.1.9 In

our formulation (2.6) this means that the double-commutators [Li, [Li,Φt]] are negligible.

This behaviour is exactly confirmed by figure 10. Thus we obtain a matrix chain (analogous

to a spin chain), consisting of Hermitian matrices with a quartic potential, which are linked

by a discrete second derivative. In the large N limit ref. [26] derived the critical line

m2
c = −

(

3N2

16R2
λ

)2/3

. (5.6)

This formula corresponds to the one-cut vs. two-cut transition in the eigenvalue distribution

of random matrices. This transition plays an essential rôle; it must show up at least for

sufficiently large λ. In addition it is of importance down to the triple point, where it merges

with the transition to the uniform order. But as the coupling is lowered, the fuzzy kinetic

term distorts the form (5.6) for this transition line. It eventually terminates at the triple

point — a feature not present in the matrix chain.

Figure 11 shows two examples where the behaviour of eq. (5.6) is matched accurately,

up to a modification in the coefficient. We take a closer look at the first case, N = 8,

R = 16, where the precise agreement with the exponent in eq. (5.6) is amazing because

of the relatively small matrices. We further fix λ = 625 and we show in figure 12 the

specific heat and the order parameters. The former confirms the critical parameter m2
c =

−9.0(5) which appears in figure 11. The order parameters demonstrate that we deal with

a transition between disorder and non-uniform order, where the latter corresponds now to

the condensation of higher modes, ℓ > 1 (unlike the examples in Subsection 4.2).

This type of model (matrix quantum mechanics) has applications in various branches

of physics. For instance QCD with Nf light quarks flavours in a small box but an elongated

9One should expect the model on a non-commutative torus to agree in this regime, but it has only been

simulated up to moderate coupling [19], as we mentioned in Subsection 5.2.
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Figure 10: The different contributions to the internal energy at N = 8, R = 16 and λ = 625. The

temporal kinetic contribution U2 now clearly dominates over the spatial kinetic contribution U1, in

contrast to the weak coupling behaviour shown in the last plot of figure 3. This is fully consistent

with the observed reduction in the spatial directions only, which leads to the matrix chain behaviour

described in ref. [26].
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Figure 11: The phase transition at strong coupling λ for N = 8, R = 16 (on the left), and for

N = 23, R = 16 (on the right). In both cases we observe a broad window of agreement with the

matrix chain formula (5.6).

time direction (the so-called “δ-regime”) can be treated effectively by quantum mechanics

of SU(Nf ) matrices [28]. The very same technique can also be applied in solid state

physics [29].

Our case of Hermitian matrices attracted attention in string theory since the early

nineties [30, 31]. In that framework it represents the c = 1-model, which describes random

surfaces moving in one dimension. At a finite time periodicity T there is a vortices-driven

Kosterlitz-Thouless phase transition to the c = 0-model [30, 32]. Possible links to QCD2,

to 2d black holes and to topological field theory were studied intensively [33]. This model
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Figure 12: The specific heat (on the left) and the order parameters (on the right) at N = 8,

R = 16 and λ = 625. We confirm the critical value m2
c = −9.0(5) at the transition between disorder

and a non-uniform order (cf. figure 11 on the left). The plot on the right demonstrates that it

corresponds to a higher mode condensation, i.e. to a non-uniform order with a complicated pattern.

spatial temporal setting status

kin. term kin. term

2d model on numerical studies [8]

large small a fuzzy sphere not attained here

matrix chain analytical studies [25, 26]

small large or c=1-model reproduced here at large λ

total reduction analytical study [26]

small small 1-matrix model not attained here

Table 2: An overview of the conceivable reductions of our system — due to the negligibility of

kinetic terms — and their status in the literature and in this work.

continues to attract interest, see refs. [34] for recent examples.

An overview of the different reduction scenarios is added in table 2.

6. A conjecture about the large N limit

In this section we discuss the extrapolation of the phase diagram to large N (which rep-

resents the thermodynamic limit) and to large R (the transition of the spatial part to a

plane). In addition our rule (2.18) connects the large N limit with the thermodynamic

limit in the temporal direction.

We first consider the geometry of the sphere under these limits. As we remove the

cutoff N , the coordinates (2.3) describe different 2d spaces, depending on the simultaneous

treatment of the radius R:

• The limit N → ∞ at R = const. leads to a sharp sphere.
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• If the radius grows slowly, R ∝ Nβ , 0 < β < 1/2, we end up with a sharp plane in

the large N limit.

• If we take instead N ∝ R2 → ∞ we obtain a non-commutative plane with a constant

non-commutativity tensor Θµν = i θ ǫµν (where µ, ν ∈ {1, 2}). This can be seen for

instance in the plane which emerges around the point (0, 0, 1),

[X1,X2] ≃ i
2R2

√
N2 − 1

X3

R
⇒ θ =

2R2

N
. (6.1)

The scaling behaviour of a field theory on this space, and in particular its phase

diagram, still has to be investigated. For the parameter range simulated, this was carried

out in section 4. We now address the issue of the large N extrapolation, which was

postponed in section 4. For the disorder/non-uniform order transition, we found agreement

with the eqs. (4.6) and (4.7) at moderate λ, and with eq. (5.6) at strong λ (up to a modest

modification of the coefficient). In either case λ only occurs in a product with a positive

power of N (1 resp. 4/3). This is consistent with the suppression of field fluctuations

at large N or large λ. Based on this property, we conjecture that exploring the large N

behaviour could be equivalent to the case of large λ at the values of N in our study.

This means that we now refer to eq. (5.6) to determine the triple point. The behaviour

m2
c = −c(N/R)4/3λ2/3 (c = const.) (6.2)

is compatible with our data. For instance at R = 16 we obtained m2
cλ

−2/3 ≃ −0.121 at

N = 8, and −0.31 at N = 16 (see figures 11 and 13), which matches very well the behaviour

m2
c ∝ N4/3. Also the dependence of the radius follows eq. (6.2): for example the results

at N = 8 and R = 8 vs. R = 16 (in figures 11 and 13) agree very well with the relation

m2
c ∝ R−4/3. Considering many fits of that kind [11] we found that both exponents and

the coefficients c in eq. (6.2) fluctuate within about 10% around the theortical values of

eq. (5.6), which were derived for the matrix chain at large N [26].

The intersection of this curve with the disorder/uniform order transition line (4.4)

yields

λT ∝ N2.1(2)

R2.1(1)
. (6.3)

In the framework of this conjecture, we obtain the following scenarios10 for the limit

N → ∞:

• Limits with N → ∞, N/R → ∞ remove the phase of non-uniform order. Then

the ordered regime only consists of the uniform phase, which is separated by an

Ising transition from the disordered phase. This limit corresponds to a commutative

model. It includes in particular the case of a sharp sphere (R = const.). In contrast

to the tree-level expectation, this class of limits also captures the case N ∝ R2, which

geometrically leads to a non-commutative plane.

10Based on the errors of the exponents in eq. (6.3), the distinction between the scenarios should actually

refer to β = 1.0(1) (where β is defined in eq. (5.4)), but for simplicity we just refer to β = 1.
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Figure 13: The phase transition at strong coupling λ for N = 16, R = 16 (on the left), and for

N = 8, R = 8 (on the right). As in figure 11 we find agreement with the matrix chain prediction

m2

c ∝ λ2/3. In addition, comparison to the result for N = 8, R = 16 in figure 11 supports the full

proportionality relation (6.2).

• If the limits N, R → ∞ are taken such that the ratio N/R remains finite, the triple

point stabilises and the phase diagram keeps qualitatively the form that we observed

at finite N ; all three phases persist.

• Limits with N → ∞, N/R → 0 remove the phase of uniform order. Now the ordered

regime consists solely of the non-uniform phase. This scenario is obtained for a rapidly

expanding sphere. Here the non-commutativity dominates the thermodynamic limit.

The transition lines that we identified at small and at moderate coupling in section 4

do not scale simultaneously for for any fixed choice of the axes of the phase diagram, as

the forms (4.4) and (4.6) show. On the other hand, the large N behaviour (as conjectured

in this section) overcomes this problem: if the triple point moves to 0 or ∞, only one

transition line survives. In the case R ∝ N , which stabilises a finite triple point, the axes

(λ,m2) apply to both transition lines, without the necessity of rescaling.

7. Conclusions

We presented a numerical study of the phase diagram in the 3d λφ4 model, where the

spatial part is regularised on a fuzzy sphere, while the Euclidean time is lattice discretised.

On the regularised level, we identified three phases based on the order parameters ϕℓ in

eq. (2.14), the corresponding susceptibilities and the specific heat. At fixed λ there is a

critical parameter m2
c < 0 : for m2 > m2

c (m2 < m2
c) the system is disordered (ordered).

The transition to m2 < m2
c leads to a uniform order at small λ, and to a non-uniform order

at moderate or large λ.11

11We always refer to a region where m2 is kept of the same magnitude as m2

c; driving it to m2
≪ m2

c

causes simulation problems with the thermalisation and decorrelation, hence we could not explore that

region reliably. Similar technical problems obstructed a direct observation of the transition between the

two ordered phases.
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The boundary between these two scenarios corresponds to the triple point, which we

denoted as (λT ,m2
T ). The transition disorder/uniform order (at λ < λT ) is analogous to a

spontaneous magnetisation and its critical line is parameterised by eq. (4.4).

The non-uniform ordered phase emerges as a consequence of the non-locality in the

fuzzy sphere regularisation. That phase does not occur in a pure lattice regularisation. It

corresponds to a spontaneously broken rotation symmetry. At moderate coupling strength,

λ>∼λT , the critical line is described by eqs. (4.6) and (4.7). From its intersection with the

curve (4.4) we infer the location of the triple point given in eq. (4.8). This formula captures

a large amount of data that we collected, but it cannot be extrapolated to the limit N → ∞.

Next we discussed the relation between the system studied here and some models

investigated in the literature, which have qualitatively similar phase diagrams at finite N .

We found, however, significant differences from the 2d λφ4 model an a fuzzy sphere [8]. As

for the 3d λφ4 model on a non-commutative torus [19] the vicinity of the triple point can

be matched rather roughly for a suitable relation between N and R.

At large λ, we observed consistency with the reduction to a matrix chain model, which

had been solved in the large N limit [26]. In particular our data match precisely the

predicted relation m2
c ∝ (N2λ/R2)2/3. That model is known as the c = 1-model in string

theory [30 – 34], which we have therefore captured non-perturbatively.

We then conjectured that large N values may be equivalent to large λ couplings at

moderate N , since N and λ tend to appear only as products in the formulae for the phase

transition lines. This conjecture leads to different limits depending on the exponent β in the

relation R ∝ Nβ. For β < 1 we obtain a commutative limit, with an Ising-type transition

between disorder and uniform order. On the other hand, a rapidly expanding sphere

(β > 1) leads to a dominance of the non-uniform phase. That feature is a characteristic

for a non-commutative theory, where UV/IR mixing gives rise to an ordering due to the

condensation of a non-zero mode [16 – 19].

It remains an open question to verify the conjectured limits by direct inspection of

the triple point at very large system sizes, N . For instance, at R = const. one should

verify the properties of the fuzzy sphere at larger N . In the light of gravity-induced non-

commutativity on the Planck scale [35], a relation to quantum effects in a black hole might

be conceivable (see e.g. refs. [32, 36] for this line of thought).

According to our conjecture, the distinction between the scenarios of a commutative

and a non-commutative limit is not located at the point where it is expected on purely

geometrical grounds (β = 1/2). Furthermore, it does not coincide with the picture sug-

gested by a perturbative calculation to two loops [20]. In that picture the commutative

continuum limit could not be retrieved at all because of the UV/IR mixing [20].12

A general lesson is that non-locality — once it is introduced — can cause surprises in

the extrapolations on the non-perturbative level. This observation may serve as a warning

also for the use of non-local actions in lattice simulations, such as rooted staggered fermions

12The model studied perturbatively in refs. [20] coincides with the one considered here, up to the use of

a continuous Euclidean time. In the framework of the c = 1-model (at large λ) it is a mystery that this

difference seems to imply a T ∼ 1/T duality, which is absent in the matrix chain [30].
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(cf. footnote 4) or overlap fermions [37] at strong gauge coupling.13 On the other hand, such

surprises may provide insight into other universality classes of interest, as we have seen.

However, using the fuzzy sphere as a regularisation scheme in quantum field theory is not

straightforward and its application requires a careful investigation of the phase diagram.

A. Technical aspects of the simulation

Our simulations were based on the Metropolis algorithm. In each step we updated only one

pair of conjugate matrix elements, (Φt)ij = (Φt)
∗
ji . A detailed comparison in technically

similar simulations revealed that this is far more efficient than updating complete matrices

Φt [19]. It proved useful to propose independent changes of the real and the imaginary

part of (Φt)ij with absolute values below N
√

m2/λ (and flat probability distribution); this

led to acceptance rates typically around 1/2. One sweep applies this step successively to

all independent elements in a configuration Φ.

We were often confronted with several local minima of the action. In many cases these

minima were too pronounced for a tunnelling to occur even in histories involving O(107)

sweeps. This property obviously obstructs the direct measurement of observables. As a

first remedy we performed a number of runs with independent hot starts. At the end we

summed up the statistics collected in each run after thermalisation (which we are going

to comment on below). The histories in all runs had the same length of O(106) sweeps.

This improves the situation, but the number of runs was still too small (typically O(10))

to sample the vicinities of the different minima reliably.

Therefore we extended the algorithm as follows. We stored the end configuration of

each run as Φend. The subsequent run takes a new hot start, but after thermalisation the

current configuration may be replaced by Φend through a Metropolis accept/reject step,

before the history continues. We denote this method as adaptive Metropolis algorithm. In

fact it improves the statistically correct inclusion of the vicinities around various minima,

and it leads to stable and sensible measurements, as the examples in figure 14 illustrate.

The impact of higher local minima tends to be overestimated by fully independent runs.

The additional Metropolis step helps to overcome this artifact; in particular the global

minimum now receives the suitable weight. Figure 15 (on the left) shows an example for

this effect.14 In principle the variety of metastable vacua can be regarded as a severe

thermalisation problem. However, since it is taken care of by the adaptive Metropolis

step, we reduce our notion of thermalisation to the Monte Carlo time in each run until

the observables stabilise over a long period at the value that corresponds to the chosen

minimum. In this respect, about 2000 sweeps were sufficient to thermalise quantities like

the action and our order parameters (introduced in section 2).

13Despite the inverse square root in the overlap operator, it is local at weak gauge coupling resp. on fine

lattices [38]. The range of locality — and therefore of a safe definition of chiral fermions — can still be

enlarged by a non-standard kernel [39].
14In his study of the 2d model on a fuzzy sphere, M. Panero applied successfully an “overrelaxation”

technique, which is described in his works quoted in ref. [8]. However, this technique is unlikely to be

applicable in our case, due to the presence of the temporal kinetic term.
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Figure 14: An illustration of the progress due to the adaptive Metropolis algorithm. The param-

eters in these examples are N = 12, R = 4, λ = 1.83. On the left we show the specific heat C;

for adaptive Metropolis only the peak is clearly observed at the critical value m2

c . The plot on the

right is a histogram for Tr(Φ̄) at m2 = −1.7, i.e. in the phase of uniform order. The two peaks

approximate the expected symmetric form well with adaptive Metropolis, but not with the same

number of independent runs.

While this thermalisation is harmless, a technical problem could occur due to a large

number of local minima, in particular at λ ≫ λT . For a simplified consideration we assume

the kinetic terms to be negligible (although we saw in Subsection 5.3 that this complete

reduction is not really achieved). Then the matrices Φt are independent and — in a

minimum of the potential — each one can be transformed to a diagonal form with elements

±
√

|m2|/(Nλ). With all sign combinations the term c̄00 =
√

4π ·Tr(Φ̄)/N2 can take N2 +1

values, which is a considerable number for the system sizes that we studied. However, for

independent random signs the values near zero dominate, whereas the probabilities for

minima with large ϕ0 = |c̄00| are suppressed. For instance figure 15 (on the right) shows a

histogram for c̄00 at N = 12 ; only 5 peaks (corresponding to the 5 dominant minima) are

visible.

The statistical errors were evaluated independently with the binning and the jackknife

method on one hand (we probed various bin sizes), and with the Madras-Sokal method [40]

on the other hand. The latter amplifies the standard error by a factor which takes the

autocorrelation into account. We generally display the largest (and therefore safest) error

bar obtained by these methods.
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Figure 15: Histograms for two quantities, which are sensitive to the variety of action minima. On
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[12] H. Grosse, C. Klimč́ık and P. Prešnajder, Field theory on a supersymmetric lattice, Commun.

Math. Phys. 185 (1997) 155 [hep-th/9507074];
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A.P. Balachandran, S. S. Kürkçüoǧlu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY

physics, hep-th/0511114;

B. Ydri, Notes on noncommutative supersymmetric gauge theory on the fuzzy supersphere,

Int. J. Mod. Phys. A 22 (2007) 5179 [arXiv:0708.3065];

B. Ydri, A proposal for a non-perturbative regularization of N = 2 SUSY 4D gauge theory,

Mod. Phys. Lett. A 22 (2007) 2565 [arXiv:0708.3066];

T. Azuma, S. Bal and J. Nishimura, The instability of intersecting fuzzy spheres,

arXiv:0712.0646.

[13] K.N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, Impact of supersymmetry on

the nonperturbative dynamics of fuzzy spheres, JHEP 09 (2005) 046 [hep-th/0506062];

J. Volkholz and W. Bietenholz, Simulations of a supersymmetry inspired model on a fuzzy

sphere, PoS(LAT07)283.

[14] H. Grosse and P. Prešnajder, The Dirac operator on the fuzzy sphere, Lett. Math. Phys. 33

(1995) 171;

A.P. Balachandran and G. Immirzi, The fuzzy Ginsparg-Wilson algebra: a solution of the

fermion doubling problem, Phys. Rev. D 68 (2003) 065023 [hep-th/0301242].

– 25 –

http://jhep.sissa.it/stdsearch?paper=04%282004%29077
http://arxiv.org/abs/hep-th/0402230
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2005)262
http://arxiv.org/abs/hep-th/0609205
http://jhep.sissa.it/stdsearch?paper=05%282007%29082
http://jhep.sissa.it/stdsearch?paper=05%282007%29082
http://arxiv.org/abs/hep-th/0608202
http://arxiv.org/abs/0706.0695
http://jhep.sissa.it/stdsearch?paper=11%282006%29016
http://arxiv.org/abs/hep-lat/0606013
http://arxiv.org/abs/0712.3011
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2005)263
http://arxiv.org/abs/hep-lat/0509162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C185%2C155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C185%2C155
http://arxiv.org/abs/hep-th/9507074
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C206%2C567
http://arxiv.org/abs/hep-th/9903112
http://jhep.sissa.it/stdsearch?paper=07%282002%29056
http://arxiv.org/abs/hep-th/0204170
http://jhep.sissa.it/stdsearch?paper=12%282005%29002
http://arxiv.org/abs/hep-th/0506037
http://arxiv.org/abs/hep-th/0511114
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA22%2C5179
http://arxiv.org/abs/0708.3065
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA22%2C2565
http://arxiv.org/abs/0708.3066
http://arxiv.org/abs/0712.0646
http://jhep.sissa.it/stdsearch?paper=09%282005%29046
http://arxiv.org/abs/hep-th/0506062
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT07)283
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C33%2C171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LMPHD%2C33%2C171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C065023
http://arxiv.org/abs/hep-th/0301242


J
H
E
P
0
4
(
2
0
0
8
)
0
4
1

[15] M. Creutz, Why rooting fails, arXiv:0708.1295;

A.S. Kronfeld, Lattice gauge theory with staggered fermions: how, where and why (not),

PoS(LAT2007)016 [arXiv:0711.0699].

[16] S.S. Gubser and S.L. Sondhi, Phase structure of non-commutative scalar field theories, Nucl.

Phys. B 605 (2001) 395 [hep-th/0006119].

[17] G.-H. Chen and Y.-S. Wu, Renormalization group equations and the Lifshitz point in

noncommutative Landau-Ginsburg theory, Nucl. Phys. B 622 (2002) 189 [hep-th/0110134].
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